## Worksheet 8

Date: 10/27/2022
Name:

## Definitions and statements

DEFINITION 1. Let $a, b \in \mathbb{Z}$ where $a$ is non-zero. We say $a$ divides $b$ if

$$
b=a \cdot c \text { for some integer } c .
$$

When $a$ divides $b$, we write $a \mid b$.
THEOREM 1 (The Division Algorithm). For positive integers $a$ and $b$, there exists unique integers $q$ and $r$ such that

$$
b=a q+r \text { where } 0 \leq r<a \text {. }
$$

DEFINITION 2. Let $n$ be a positive integer. For $a, b \in \mathbb{Z}$, if $n$ divides $a-b$, we say that $a$ is congruent to $b$ modulo $n$. written as

$$
a \equiv b \quad(\bmod n)
$$

PROPOSITION 2. Let $n, k$ be positive integers, and $a, b \in \mathbb{Z}$. If $a \equiv b(\bmod n)$, then $a^{k} \equiv b^{k}(\bmod n)$.
DEFINITION 3. The greatest common divisor of integers $a$ and $b$, denoted $\operatorname{gcd}(a, b)$, is the largest integer that divides both $a$ and $b$.

## Practice Problems

1. Suppose the division algorithm is applied to $a$ and $b$ yields $a=b q+r$. prove $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, b)$.
2. If integers $a$ and $b$ are not both zero, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$.
3. If $n \in \mathbb{Z}$, then $\operatorname{gcd}(n, n+2) \in\{1,2\}$
4. Show that for any integer $k, \operatorname{gcd}(9 k+4,2 k+1)=1$.
5. Suppose $a$ and $b$ are integers. Then $a \equiv b(\bmod 6)$ if and only if $a \equiv b(\bmod 2)$ and $a \equiv b(\bmod 3)$
6. Find the reminder obtained up diving the sum

$$
\sum_{n=1}^{100} n!
$$

by 12 .
7. Suppose $a, b$ and $c$ are integers. If $a^{2} \mid b$ and $b^{3} \mid c$, then $a^{6} \mid c$.
8. If $n \in \mathbb{N}$, then $2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$.
9. If $n \in \mathbb{Z}$, then $4 \mid n^{2}$ or $4 \mid\left(n^{2}-1\right)$.
10. Suppose $a, b$ and $c$ are integers. If $a \mid b$ and $a \mid\left(b^{2}-c\right)$, then $a \mid c$.

