WORKSHEET 8

Date: 10/27/2022

Name:

Definitions and statements

DEFINITION 1. Let $a, b \in \mathbb{Z}$ where *a* is non-zero. We say *a* **divides** *b* if

 $b = a \cdot c$ for some integer c.

When *a* divides *b*, we write a|b.

THEOREM 1 (The Division Algorithm). *For positive integers a and b, there exists unique integers q and r such that*

$$b = aq + r$$
 where $0 \le r < a$.

DEFINITION 2. Let *n* be a positive integer. For $a, b \in \mathbb{Z}$, if *n* divides a - b, we say that *a* is **congruent to** *b* **modulo** *n*. written as

 $a \equiv b \pmod{n}$

PROPOSITION 2. Let *n*, *k* be positive integers, and $a, b \in \mathbb{Z}$. If $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.

DEFINITION 3. The greatest common divisor of integers *a* and *b*, denoted gcd(a,b), is the largest integer that divides both *a* and *b*.

Practice Problems

1. Suppose the division algorithm is applied to *a* and *b* yields a = bq + r. prove gcd(a,b) = gcd(r,b).

2. If integers *a* and *b* are not both zero, then gcd(a,b) = gcd(a-b,b).

3. If $n \in \mathbb{Z}$, then $gcd(n, n+2) \in \{1, 2\}$

4. Show that for any integer k, gcd(9k+4, 2k+1) = 1.

5. Suppose *a* and *b* are integers. Then $a \equiv b \pmod{6}$ if and only if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$

6. Find the reminder obtained up diving the sum

$$\sum_{n=1}^{100} n!$$

by 12.

7. Suppose a, b and c are integers. If $a^2|b$ and $b^3|c$, then $a^6|c$.

8. If $n \in \mathbb{N}$, then $2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$.

9. If $n \in \mathbb{Z}$, then $4|n^2$ or $4|(n^2 - 1)$.

10. Suppose a, b and c are integers. If a|b and $a|(b^2 - c)$, then a|c.